Proper Grounding for VFD and Motor Systems

Aquatic Animal Life Support Operators Symposium
May 3, 2010
Topics

- Shaft Currents and their negative effects
- Drive/System Grounding: Do’s and Don’ts
- Motor bearing and ground currents:
 - effects and problems that result
 - Shaft Current Prevention
Shaft currents can lead to motor failure

- Currents exit the system via the shaft bearings
- Bearings can erode and break down as a result
- Service life of motor reduced
 - 90% reduction in life and higher
 - Higher maintenance
 - Critical processes affected
Types of failure observed

- **Pitting of bearings**
 - Results at point of current discharge across a bearing on the bearing race

- **Frosting**
 - This is the result of continued pitting from the bearing discharge
 - Typically observed when a process motor speed widely varies during operation
Types of failure observed

- **Fluting**
 - These are patterned ridges in the bearing race
 - More commonly observed in systems that have high constant speeds
Sources of Shaft Unwanted Currents

- Poor equipment grounding practices
- VSD (Variable speed drive) introduces induced currents not seen with direct across-the-line motor installations.
Grounding practices

- Apply grounding for VSD and Motors as illustrated.
 - Correct
 - Incorrect
Other Grounding Considerations

- Avoid Ground Loops
- Do not ground VFD/Motor at same common as welding equipment
- Avoid grounding near transmission towers
- Check grounding lugs in panels
 - Paint / Corrosion can cause barriers to grounding
 - Star washers, or ground screw directly welded to panel.
 - Ensure true path to earth
VFDs are being applied to motors with increasing frequency

- VFDs save energy, provide smoother operation, and overall improve applications involving motor driven processes.
- Cost competitive with AC contactors and overloads.
- VFDs introduce new problems due to the pulse width modulation (PWM) method of producing sine waves.
VFD Pulse width modulation

- What an across-the-line motor sees

- What a VFD Driven motor sees
 - “Bursts” or “Pulses” at 650+V
 - 2000-16000 times per second/per phase!
VFD Pulse width modulation

- The instantaneous sum of 3 pulse width signals cannot be 0.
- + and - DC voltages are the result, which is also known as Common Mode voltage.
VFD Pulse width modulation

- Potential for the pulses to periodically exceed the dielectric strength of the air gap between stator windings and rotor laminates
- Resulting unwanted voltage surges migrate from rotor to shaft
 - Have been observed to be as high as 70 Volts in some systems
 - Looking for a ground path for discharge.
Failure progression from Rotor to Bearings

- Bearings sit in a film of lubricating oil
- The stray voltages find “opportunities” to overcome the dielectric strength of the film.
 - Relatively large discharge in a small area causes damage.
 - Eventual breakdown of lubricating oil will further aggravate situations.
Bearing discharge to failed motor progression

- Pitting as discharge occurs
- Frosting as progressive pitting continues
- Fluting in many cases
- Added friction in the bearing raceway
 - Heat and mechanical wear on bearings
 - Failure of bearings / process
Solutions to alleviate bearing discharge

- **Insulated bearings**: Sounds like a simple solution, but...
 - Expense makes this impractical for smaller motors.
 - This only transfers the discharge point away from the motor bearings.

- **Possible new discharge areas**
 - Pump
 - Any gauge or tach in the system
Solutions to alleviate bearing discharge

- **Ceramic Bearings**: better dielectric strength than insulated bearings, but:
 - Expensive solution
 - Difficult retrofit, as mechanical properties of ceramics will typically require larger ceramic bearings than metallic.
 - Still transferring shaft ground currents elsewhere rather than eliminating them.
Solutions to alleviate bearing discharge

- **Grounding Brush**: Metallic conducting brush rides on rotor. Conductive path for shaft currents.
 - Placement is important. Usually on load end of motor shaft.
 - Implemented along with insulated bearings, this can be a good solution.
 - Downside:
 - Brush wear, so periodic maintenance
 - Brush could collect contaminants that could cause mechanical wear at shaft.
Solutions to alleviate bearing discharge

- **Conducting grease**: Metallic particles in grease provide low impedance outlets for shaft currents.
 - Abrasive compounds: Introduce mechanical wear on bearings

- **Faraday (electrostatic) shield**: Capacitive barrier between stator and rotor.
 - Expensive solution
 - Potential for path from stator winding through frame and back up through bearings to shaft.
 - Largely used by chip/board makers where the shaft currents can contaminate the board.
Solutions to alleviate bearing discharge

- **Shaft Grounding Rings**: Rings that slip on the shaft and contain conducting microfibers.
 - Similar principle to grounding brushes except the fibers “fixed” in a composite.
 - Many more microfibers than in brushes
 - Wear is minimal
Solutions to alleviate bearing discharge

- Drive design modification to mitigate sources from the PWM.
 - Expensive solution
 - Technology has not been fully developed
- Output filters for dV/dt
 - Will provide filtering for the output common noise voltage
 - Helpful, but mitigates rather than neutralize the problem.
Summary

- The use of VFDs, while having many advantages, can also produce additional problems in systems.
- Proper grounding can prevent problems of stray shaft currents.
- Addition of grounding devices on the shaft or bearing conditioning can neutralize these problems.