USDA SBIR FUNDED DENITRIFICATION RESEARCH AND TECHNOLOGY USING BIODEGRADABLE BIOPOLYMER (PHA's)

> Paul G. Hightower Research Associate

James M. Ebeling, Ph.D. Research Engineer

Douglas Drennan Managing Member

Aquaculture Systems Technologies, LLC 108 Industrial Ave. New Orleans, LA 70121

Introduction

Overview

- Fundamentals of Denitrification
 - Stoichiometry & Kinetics
- Phase I USDA SBIR Grant
- (Small Business Innovative Research)
 - polyhydroxyalkanoates (PHAs)
 - lab-scale PolyGeyser[®] denitrification unit
- Phase II of the SBIR
 - critical kinetic constants

Introduction

Increased Density + Higher Nitrates
Nitrate Toxicity (Marine Systems)
Nitrate – Environmental Impact

Change thinking from conversion of nitrogen to removal of nitrogen!

Denitrification

(Bacteria widespread in the environment)

Facultative aerobic bacteria
 Shift to NO₃⁻ or NO₂⁻ when O₂ limited
 Chemotrophic

- Heterotrophic organic electron donor
- Autotrophic H₂ or reduced sulfur

Denitrification

Nitrate $(NO_3^-) \Rightarrow$ Nitrite $(NO_2^-) \Rightarrow$ Nitric Oxide $(NO) \Rightarrow$ Nitrous Oxide $(N_2) \Rightarrow$ Nitrogen Gas (N_2)

$$NO_3 + \frac{5}{6}CH_3OH \rightarrow \frac{1}{2}N_2 + \frac{5}{6}CO_2 + \frac{2}{3}H_2O + OH^-$$

Denitrification

Optimal Conditions

- Low redox potential
 - ORP > -200 mV incomplete denitrification NO_2^- , NO_2 and N_2O
 - ORP < 400 mV production of hydrogen sulfide (H_2S)
- Low Oxygen Levels (anoxic)
 - High DO \Rightarrow accumulation of intermediates, NO₂⁻, NO₂ and N₂O
- pH: 7 to 8
- Alkalinity 3.57 g CaCO₃/ g NO₃⁻⁻N consumed

USDA Phase I SBIR

Passive Self-Regulating Denitrification Technology for Aquaculture

Phase I Technical Objectives

- Characterize the volumetric denitrification capacity of floating PHA pellets in AST's PolyGeyser[®] configuration
- Determine the effect of hydraulic loading rates on denitrification performance
- Conduct basic reactor modeling to project PolyGeyser[®] denitrification performances for a variety of applications

PolyGeyser[®] Bead Filter

Polyhydroxyalkanotes (PHAs)

Family of bioplastic polymers, produced from sugar fermentation

- Low Maintenance
- Cost effective
- Carbon source
- Substrate for Bacteria

Denitrification – PHA Stoichiometry

NO₃⁻ + 0.39 C₄H₆O₂ → 0.088 C₅H₇O₂N + 0.456 N₂ + HCO₃⁻ + 0.121 CO₂ + 0.363 H₂O

Polyhydroxyalkanotes (PHAs)

excessive biofloc formation at high Nitrate-nitrogen loading & high BOD

0

Small-Scale Experimental PolyGeyser®

Water Quality Sampling

Parameter	Method / Range
DO / Temperature	YSI Model 58 Dissolved Oxygen Meter
Salinity / Conductivity	YSI Model 33 S-C-T Meter
Nitrogen – Ammonia	Hach Method 8038 Nessler Method $0 - 2.50 \text{ mg/L NH}_3$ -N
Nitrogen – Nitrite	Hach Method 8507 Diazotization Method $0 - 0.300 \text{ mg/L NO}_2^-$ -N
Nitrogen -Nitrate	Hach Method 8039 Cadmium Reduction Method $0.0 - 10.0 \text{ mg/L NO}_3^-$ - N
Alkalinity	Standard Methods 2320B as CaCO ₃

Mass Balance Analysis – Overall System

 $VNR = \frac{dC_F}{dt} = \frac{V_{Sump}}{V_{media}} \frac{dC_{Sump}}{dt} * \frac{1g}{10^3 mg}$

$$C_{Sump}$$
 = concentration of nitrate-nitrogen in the reservoir [mg/L]
 V_{Sump} = volume of the sump [L]
 C_{F} = concentration of nitrate-nitrogen in the biofilter [mg/L]
 V_{media} = volume of the biofilters [L]
t = time [day]

Mass Balance Analysis – Across BioReactor

 $VNR = \frac{dC_F}{dt} = \frac{(C_i - C_e)}{V_{media}/Q} * 1440 \frac{\min}{day} * \frac{1L}{10^3 ml}$

 $\begin{array}{ll} dC_{F} &= \mbox{change in nitrate-nitrogen across biofilter [mg/L]} \\ C_{i} &= \mbox{nitrate-nitrogen concentration in influent to biofilter [mg/L]} \\ C_{e} &= \mbox{nitrate-nitrogen concentration in effluent from biofilter [mg/L]} \\ V_{media} &= \mbox{volume of media in the biofilter [L]} \\ Q &= \mbox{flow rate through biofilter [Lpm]} \\ t &= \mbox{time [day]} \end{array}$

Monod Format – Satuation Equation

 $VNR = VNR_{max} \left[\frac{C_{NO_3 - N}}{C_{NO_3 - N} + K_{1/2}} \right]$

VNR = reaction rate [kg/m³ day] VNR_{max} = maximum reaction rate [kg/m³ day] $K_{1/2}$ = half-saturation coefficient for Nitrate [mg NO₃-N /L] C_{NO3-N} = nitrate-nitrogen [mg NO₃-N]

Lab-Scale Experimental PolyGeyser®

Water Quality across Bed

Change in dissolved oxygen across the PolyGeyser[®] denitrification bioreactor with influent flow rate of 150 mL/min.

Water Quality across Bed

Change in nitrate-nitrogen and alkalinity across the PolyGeyser[®] denitrification bioreactor with influent flow rate of 150 mL/min.

Water Quality across Bed

Change in nitrate-nitrogen and alkalinity across the PolyGeyser[®] denitrification bioreactor with influent nitrate-nitrogen concentration of 80 to 85 mg/l-N and flow rate of 100 mL/min.

Acclimation of Experimental Denitrification Units at High Nitrate-nitrogen

150 mL/min Flow Rate

Acclimation of Experimental Denitrification Units at High Nitrate-nitrogen

Alkalinity / NO_3 -N = 3.77

Acclimation of Experimental Denitrification Units at High Nitrate-nitrogen

Denitrification - PHAs

Flow Rate	ΔNO_3 -N	NO ₃ -N	ΔAlk	Alkalinity	ΔNO_3 -N/
(# of samples)	(mg/L-N)	(kg/m ³ day)	(mg/L)	(kg/m ³ day)	ΔAlk
100 mL/min	-16.0	1.15	56.8	4.09	3.69
(15)	± 3.6	± 0.26	± 7.0	± 0.6	± 0.8
150 mL/min	-19.1	2.06	66.8	7.2	3.28
(15)	± 4.9	± 0.53	± 15.9	± 1.7	± 1.09
220 mL/min	-10.9	1.73	36.4	5.77	3.52
(16)	± 2.4	± 0.38	± 8.5	± 1.35	± 1.22

Marine Lab-Scale Packed-Bed BioReactors

- Salinity 10 to 32 ppt
- Low BOD
- Low TSS
- Nitrate 50 to 250 mg/L-N

VNR – Monod Relationship

USDA Phase II SBIR

Passive Self-Regulating Denitrification Technology for Aquaculture

Phase II Primary Technical Objectives

- Characterize the PHAs mass consumption rate of dissolved oxygen in AST's PolyGeyser[®] configuration.
- Characterize the PHAs mass consumption rate for nitrate-nitrogen in AST's PolyGeyser[®] configuration.
- Characterize the PHAs nitrate-nitrogen conversion rate in AST's PolyGeyser[®] configuration at several trophic levels.

Commercial "virgin" Mirel[™] PHA Media

Three formulations of PHA media obtained from Mirel[™] Bioplastics.

Mirel PHA <u>New</u> Non-Floating Media The PHA base polymer in Mirel [™] is made through a patented process for microbial fermentation of plant-derived sugar. c

Marine Lab-Scale Packed-Bed Bioreactors

Representative of an Aquarium/Zoo or Marine Recirculating Aquaculture System

- 4" Dia clear PVC Pipe
- 18" Tall
- Sampling Ports @ 4" Intervals
- MasterFlex Pump
- 366 gallon sump
- 50 to 250 mg/L NO₃-N

Research Data Packed-Bed BioReactors

 0.81 g NO_3 -N/ L_{media} day

Research PolyGeyserTM BioReactors

Representative of a Freshwater Intensive Recirculating Aquaculture System

PHA media obtained from Mirel [™] Bioplastics

Metered Backwash Air Supply

Three replicated BioReactors

Research Data BioReactors

Denitrification BioReactors Performance Analysis 150 mL/min							7/12/2009		
		DO	Temp	pН	ORP	TAN	NO ₂ -N	NO ₃ -N	Alkalinity
Date:		(mg/L)	(Deg C)		(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
07/16/09									
Influent	Column #1	5.55	29.1	7.71		1.54	0.232	52.5	191
	Column #2								
Time:	Column #3								
10:19 AM									
Effluent	Column #1	0.47		7.21		2.26	0.073	3.5	442
	Column #2	0.44		7.22		2.00	0.120	4.0	470
	Column #3	0.43		7.30		2.23	0.119	7.0	446

Mirel[™] Bioplastics PHA media

Mirel[™] Bioplastics PHA media

A Nitrate-Nitrogen Across Three BioReactors

Mirel[™] Bioplastics PHA media

Mirel[™] Bioplastics PHA media

Nitrate Consumption			Stoichiometry				
Sample	(g/L media	day)	Sample	Alk/Ni	trate		
LOT1-M6000	1.66	0.49	LOT1-M6000	4.13	1.3		
LOT2-M2000	1.71	0.65	LOT2-M2000	4.34	1.3		
LOT3-3640	2.20	0.79	LOT3-3640	4.07	1.4		

Stoichiometry: 3.57 g Alk/ g Nitrate

Commercial Floating PHA Media Mirel

Mirel PHA <u>New</u> Floating Media

Mirel[™] Bioplastics PHA media

Commercial PHA Media - Aquariums

<u>NP Bio Pellets</u> are a solid organic carbon polymer that provides a substrate and food for bacteria.

Prices for the NPX-Bio Beads are \$110 for 1100m

Current Research PolyGeyser[™] BioReactors

Prefilter for DO Removal - EN Meida

Metered Backwash Air Supply

Three replicated BioReactors

Research Data BioReactors

Denitrification BioReactors Performance Analysis

200 mL/min

		DO	Temp	pН	ORP	TAN	NO ₂ -N	NO ₃ -N	Alkalinity
Date:		(mg/L) ((Deg C)		(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
05/01/10									
Influent	Column #1	5.14	26.7	7.45		0.53	0.221	50.7	188
	Column #2			7.46		0.57	0.226	53.6	188
Time:	Column #3			7.46		0.56	0.285	80.9	187
9:19 AM									
Effluent	Column #1	0.28	26.8	7.11		1.17	0.144	29.9	297
	Column #2	0.24	26.7	7.13		0.61	0.053	36.4	264
	Column #3	0.23	26.8	7.12		0.95	0.055	30.0	291

Mirel[™] Bioplastics PHA media

Mirel[™] Bioplastics PHA media

A Nitrate-Nitrogen across Three BioReactors

Mirel[™] Bioplastics PHA media

Mirel[™] Bioplastics PHA media

Mirel[™] Bioplastics PHA media

Nitrate Consumption			Stoichiometry				
Sample	(g/L media day)		Sample	Alk/Nitrate			
LOT1-M6000	1.15		LOT1-M6000	3.4			
LOT2-M2000	0.94		LOT2-M2000	3.0			
LOT3-3640	1.14		LOT3-3640	3.3			

Stoichiometry: 3.57 g Alk/ g Nitrate

Conclusions

- lab-scale PolyGeyser[®] denitrification unit was designed constructed
- bioreactor units surpassed 2.0 kg/m³-day nitrate removal
- no clogging or short circuiting of the media bed
- excess biofloc settled quickly to the bottom

Questions?

Acknowledgements

Research was supported by the United States Department of Agriculture, SBIR Program under Agreement No. 59-1930-1-130 SBIR Program under Agreement No. 59-1930-1-130

Opinions, conclusions, and recommendations are of the authors and do not necessarily reflect the view of the USDA