AQUATIC LIFE SUPPORT SYSTEMS (LSS) AND CONTROL OF DISEASES

Dennis A. Thoney, Ph.D. Vancouver Aquarium

REDUCE STRESS

- Water quality
- Nutrition
- Overcrowding
- Appropriate tank mates
- Appropriate habitat

WHY SOME PARASITES ARE MORE DIFFICULT TO MANAGE IN CLOSED SYSTEMS?

Concentrated infective stages
Concentrated individual hosts
Multiple species of host
Infection susceptibility
Chemotherapeutic intolerance
Introduction of pathogens overtime
Stress

Viruses

Carp Pox

Lymphocystis

Marine Mammal Viruses

- Herpes virus
- Seal pox
- San Miguel sea lion virus
- Morbillivirus

Bacteria

- •Aeromonus
- •Psudomonas
- ullet Vibrio

Dropsy or Malawi Bloat

Fungi

Saprolegnia

Digenean Life Cycle

PARASITES WITH DIRECT LIFECYCLES

- Fungi
- Ammylodinium
- Other flagellates
- Ciliates
- Monogenea
- Hirudinea
- Copepoda/Argulus

Protozoans

Amyloodinium

Trichodina

Ichthyophthirius

Cryptocaryon & Ichthyophthirius Life Cycle

PARASITES WITH DIRECT LIFECYCLES

- Fungi
- Ammylodinium
- Other flagellates
- Ciliates
- Monogenea
- Hirudinea
- Copepoda/Argulus

Dactylogyrus

Dermophthirioides

Neobenedenia

Microcotyle Hatching

IN VITRO STERIZATION OF EGGS

Treatment	Duration	% Alive
Sanaqua 2X recommended (freshwater)	10 min	39
Sanaqua 2X remmened (salt water)	10 min	62
Calcium hypochloride 5 ppm (freshwater)	1 hr	30
Calcium hypochloride 5 ppm (salt water)	1 hr	79

PARASITES WITH DIRECT LIFECYCLES

- Fungi
- Ammylodinium
- Other flagellates
- Ciliates
- Monogenea
- Hirudinea
- Copepodal Argulus

Hirudinea

PARASITES WITH DIRECT LIFECYCLES

- Fungi
- Ammylodinium
- Other flagellates
- Ciliates
- Monogenea
- Hirudinea
- Copepoda/Argulus

Crustaceans

Lernaeenicus

Ergasilus

Argulus

MECHANICAL FILTRATION

- •Semipermeable membrane filters
- •Diatomaceous earth filters
- Cartridge paper filters
- Disk ring filters
- Sand Filters
- Bead Filters
- Drum filters

Semipermeable Filters

Filter out particles down to < 1 um (depends on membrane specification)

Diatomaceous Filters

Filters particles > 1-5 um

Paper Cartridge Filters

Filters particles > 1 um (depends on cartridge spec)

Disk Ring Filters

Filters particles > 5 um (depends on disk used)

High Rate Sand Filters

Filters particles > 30 um (#20 filter sand)

Bead Filters

Filters particles > 50 um (depends on bead dia.)

Drum Filters

Filters particles >10 um (depends on mesh specifications)

Foam Fractionators

Ozone Treatment

Inactivation Mechanism

- Leakage of cell membranes
- Lipid oxidation

Inactivation Concentration

- E. coli Destroyed with 0.02 mg.min/l
- Poliovirus 1 Destroyed with 0.1-0.2 mg.min/l
- Rotavirus Destroyed with 0.006-0.06 mg.min/l
- Giardia muris cysts - Destroyed 1.8-2.0 mg.min/l
- Oncorhynchus mykis >0.1mg/l kills trout

Common Treatments for Monogeneans (skin & gill flukes)

e) Multiple treatments
0.2 ppm, 10-14 d
250 ppm, 1 hr
25 ppm multiple doses
pt) 5-10 min, or longer
5-10 min
100 ppm, 5-10 min
15 ppm multiple doses
1-10 ppm 24 hrs
100 ppm 10 min
1-2 ppm continuous
10 ppm 3 hrs
0.5-0.7 ppm, mult doses
50 ppm 4-5 min
25 kg/ha pond

IN VITRO TREATMENT OF MICROCOTYLE HIATULAE EGGS

	B	%
Treatment	Duration	Alive
Control	continuous	97
Control	continuous	96
Copper sulphate (2 ppm)	continuous	0
Copper sulphate (2 ppm)	continuous	0
Flubendazole (10 ppm)	3 hrs	60
Flubendazole (10 ppm)	continuous	60
Formalin (250 ppm)	1 hr	83
Formalin (25 ppm)	continuous	31
Mebendazole (10 ppm)	3 hr	84
Mebendazole (2 ppm)	continuous	90
Praziquantel (10 ppm)	3 hr	55
Praziquantel (2 ppm)	continuous	82
Trichlorfon (0.7 ppm)	6 hr	91
Trichlorfon (0.7 ppm)	continuous	87

Ultraviolet Radiation

Kills Organisms

- Disrupts DNA
- Production of intra-cellular photo by-products

Pathogen UV dose mWs/cm2 (99.9% kill)

• IHNV	1-3
• IPNV	100-150
 Hepatitis A virus 	30
Poliovirus Type 1	30
Rotavirus SA11	36
 Vibrio cholerae 	2.9
 Salmonella typhi 	8.2
 Shigella sonnei 	8.2
Yeasts	24
• Cryptosporidium parvum oocysts	<10
 Giardia lamblia cysts 	<10

Conclusions

- Pathogen identification & knowledge of its biology are essential
- Mechanical LSS can reduce infective organisms from entrained water
- Monogenean eggs are very resistant
- UV is more effective against viruses and bacteria than eucaryotes
- UV requires filtered water, replacement of bulbs < 1 yr, & is not an oxidant
- Ozone has dual function of sterilization and oxidation
- Organisms that exchange gases in water are very sensitive to residual ozone
- Ozone can breakdown chemotherapeutics
- To treat for pathogens not entrained into LSS, residual ozone, chlorine,
 & associated by-products and/or chemotherapeutics must be used