

#### Energy Efficiency Tips for Large Commercial and Industrial Facilities





by Mark Zboran/Georgia Power © 2007 Southern Company All Rights Reserved. Energy Seminar



# **Reducing Energy & Energy Costs**

- There are 4 basic steps to maximizing energy and cost savings:
  - -Identify your goal
  - -Identify your acceptable rate of return
  - -Understand your utility rate structures
  - Identify your greatest areas for savings
    - Largest energy users
    - Largest areas of waste or inefficiencies
    - Areas that require little capital costs



# **Identify Your Goal**

- What are you really trying to accomplish?
  - Saving money
  - Saving energy
  - Saving the environment
- How you answer this question will help determine what projects to evaluate.



#### **Identify Your Acceptable Rate of Return on Projects**

How you answer this question will help determine what projects to actually commit budget dollars to.

- Payback
- IRR
- NPV



# **Understand Your Utility Rates**

#### **GPC PLM-I**

| Month         | Meter Billing |          | Total     | Peak   | Electric  |
|---------------|---------------|----------|-----------|--------|-----------|
|               | Read          | Davs kWh | kWh       | ĸw     | Service   |
|               |               |          |           | Demand | Iotal     |
| July '05      | 07/28/05      | 30       | 230,560   | 427    | \$14,548  |
| August '05    | 08/30/05      | 33       | 252,800   | 410    | \$15,044  |
| September '05 | 09/29/05      | 30       | 225,440   | 389    | \$14,054  |
| October '05   | 10/28/05      | 29       | 189,600   | 363    | \$12,828  |
| November '05  | 11/30/05      | 33       | 162,400   | 310    | \$11,898  |
| December '05  | 12/30/05      | 30       | 127,200   | 277    | \$10,603  |
| January '06   | 01/27/06      | 28       | 154,720   | 394    | \$11,616  |
| February '06  | 02/28/06      | 32       | 189,920   | 394    | \$12,840  |
| March '06     | 03/30/06      | 30       | 187,840   | 413    | \$12,769  |
| April '06     | 05/01/06      | 32       | 250,880   | 461    | \$14,917  |
| May '06       | 05/30/06      | 29       | 237,280   | 485    | \$14,460  |
| June '06      | 06/28/06      | 29       | 279,200   | 512    | \$17,504  |
|               |               |          |           |        |           |
| Total         |               | 365      | 2,487,840 |        | \$163,081 |
| Peak          |               | 33       | 279,200   | 512    | \$17,504  |

Average cost per kWh – 7.13. ¢ (accounts for recent fuel increases) Incremental cost per kWh - 4.01¢ Incremental cost per peak kW - \$13.23/mo. Or \$158.76/year Incremental cost reflects the "actual" impact on your bill from reducing peak kW, or kWh e orgia Power's Energy Seminar



#### Average ¢/kWh Calculation vs. Incremental ¢/kWh

#### **Example: Installation of Occupancy Sensors**

Original Peak Ltg. kW - 10 Original Annual Ltg. kWh - 60,000 New Peak Ltg. kW - 10 New Annual Ltg. kWh - 48,000 kWh Savings - 12,000 Avg. ¢/kWh Savings - 7.13¢/kWh x 12000 = \$855.60/yr. Increm. c/kWh Savings – 4.01c/kWh x 12000 = \$481.20/yr. Georgia Power's Energy Seminar



#### Average ¢/kWh Calculation vs. Incremental ¢/kWh

**Example: Lighting Retrofit** Original Peak Ltg. kW - 10 Original Annual Ltg. kWh - 60,000 New Peak Ltg. kW – 7 New Annual Ltg. kWh - 42,000 kW Savings - 3 kWh Savings - 18,000 Avg. ¢/kWh Savings – 7.13¢/kWh x 18,000 = \$1283.40/yr. Increm. \$/peak kW Savings - \$158.76 x 3 kW = \$476.28/yr. Increm. ¢/kWh Savings - 4.01¢/kWh x 18,000 = \$/721.80yr. Total Increm. Savings - \$1198.08 (7% less than avg.) Georgia Power's Energy Seminar



#### **Identify Your Greatest Areas for Savings**



Lights
Hot Water
Ventilation
Cooling
Heating
Misc.
Office Equip.
Cooking

**Typical Office** 



**Lighting Retrofits** 



#### **4-Foot Fluorescent Fixture Retrofits**



Existing: 4 – T12, 34W, with high effic. magnetic ballasts (148 watts) **Retrofit:** 4 – T8, 28W, with electronic ballast (96 watts) Wattage Savings: 52 watts/Fixture **Retrofit Cost: \$59/Fixture Annual Savings @ \$.713/kWh and 4000 Hours = \$14.83** PB = 3.9**Annual Savings @ \$.713/kWh and 6000 Hours = \$22.24** PB = 2.7Annual Savings @ \$.713/kWh and 8000 Hours = \$29.66 PB = 2.0eorgia Power's Energy Seminar G



#### **8-Foot Fluorescent Fixture Retrofits**



Existing: 2 – T12, 60W, with high effic. magnetic ballasts (133 watts) **Retrofit:** 4 – T8, 28W, with electronic ballast (96 watts) Wattage Savings: 37 watts/Fixture **Retrofit Cost:** \$60/Fixture Annual Savings @ \$.0713/kWh and 4000 Hours = \$10.55 PB = 5.7PB = 3.8**Annual Savings @ \$.0713/kWh and 6000 Hours = \$15.83** Annual Savings @ \$.0713/kWh and 8000 Hours = \$21.10 PB = 2.8eorgia Power's Energy Seminar G

# GE Screw-In Compact Fluorescent



Compared to Incandescent:

8-13X More life Up to 13% more light

7-20X More life Up to 35% more light

5-8X More life Up to 150% more light

3-13X More life Up to 129% more light

Compact Fluorescent now come as dimmable, daylight, and decorative options



#### 65R30/FL

FLE15/R30







Watts: 65 MOL: 5.37 in. Lumens: 725 Life: 2000 Savings (6000hrs, \$.0713/kwh) Cost Payback 15 5.5 in. 720 6000/10000 \$21.39/Yr

\$15 .7 Yr



PB = 1.1

## Retro-fit Incandescent EXIT Signs to LED EXIT Signs



Existing: 2 – 20W incandescent lamps (40 watts) Retrofit: LED lamps (3 watts) Wattage Savings: 37 watts/Fixture Retrofit Cost: \$25/Fixture Average Fixture & Lamp Life 25 years Annual Savings @ \$.0713/kWh and 8760 Hours = \$23.11



A SOUTHERN COMPANY

#### High Bay Lighting Retro-fits for 400W HPS or 400W MH

|                                           | Orion InteLite  |                 |              |             | 320 Watt Pulse Start |
|-------------------------------------------|-----------------|-----------------|--------------|-------------|----------------------|
|                                           | 6 lamp, 32W, T8 | 4 lamp, 54W, T5 | 400 Watt HPS | 400 Watt MH | w/Electronic Ballast |
| Annual Operating Hours                    | 6000            | 6000            | 6000         | 6000        | 6000                 |
| Cost per kWh (\$/kWh)                     | 0.0713          | 0.0713          | 0.0713       | 0.0713      | 0.0713               |
| Cost per Fixture (not including install.) | 190             | 195             | 0            | 0           | 145                  |
| Watts/Fix                                 | 221             | 234             | 465          | 458         | 345                  |
| Initial Lamp Lumen Output                 | 20358           | 20000           | 36000        | 36000       | 34000                |
| Avg. % lumen output over life (CU * LLF)  | 88%             | 86%             | 52%          | 52%         | 54.00%               |
| Avg. Lumen Output/Fixture                 | 17822           | 17126           | 18720        | 18720       | 18360                |
| Lumens/Watt                               | 81              | 73              | 40           | 41          | 53                   |
| Life (hours)                              | 20000           | 20000           | 24000        | 20000       | 20000                |
| Annual Recycling Cost                     | \$0.45          | \$0.30          | \$3.90       | \$4.68      | \$4.68               |
| Annual Lamp Replacement Cost              | \$3.60          | \$4.80          | \$3.75       | \$4.50      | \$7.50               |
| Annual Lamp Replacement Labor Cost        | \$21.60         | \$14.40         | \$6.25       | \$7.50      | \$7.50               |
| Annual Energy Cost                        | \$94.54         | \$100.11        | \$198.93     | \$195.93    | \$147.59             |
| Total Annual Costs                        | \$120.19        | \$119.61        | \$212.83     | \$212.61    | \$167.27             |
| NPV w/o taxes (10%, 10 years)             | -\$928.53       | -\$929.91       | -\$1,307.72  | -\$1,306.40 | -\$1,172.80          |







320 watt CMH234 watt 4L, T5222 watt 6L, T8GeorgiaPower'sEnergySeminar

#### Planning to Convert HID to T5 or T8



# Instant Start or Program Start?





Power's Energ



#### IS:

Layouts and Application Are Generally Unchanged
No Occupancy Sensor/Dimming Controls typically Used



a

Q

G

e

0

•Occupancy Sensor/Dimming Controls will be used to maximize energy savings by managing light output

**Program-Start:** 

e

in a r

Note: New Retrofit Guidelines May Require Use of Controls

Planning to Convert HID to T5 or T8



# Consider Glare/#Restarts?





# **2005 Energy Policy Act**

Under the interim 2005 Energy Policy Act businesses may be eligible for a lighting retrofit tax deduction.



# **2005 Energy Policy Act**

To qualify the following conditions must be met:
The retrofit must be completed prior to 12/31/08.
The retrofit must reduce the watts/sq. ft. by 25% to begin getting credit and by 40% to get the full credit of \$.60/sq. ft. (warehouses must have a 50% reduction).

The retrofit must include bi-level switching per ASHRAE 90.1 (2001).



0

#### **Qualifying Lighting Reductions**

G

6

đ

| Space Type    | Watts/sq. ft. required for partial & full deduction |  |  |  |
|---------------|-----------------------------------------------------|--|--|--|
| Warehouse     | .6 (100%)                                           |  |  |  |
| Manufacturing | 1.65 (50%) - 1.32 (100%)                            |  |  |  |
| Office        | .98 (50%)78 (100%)                                  |  |  |  |
|               |                                                     |  |  |  |

S



# **2005 Energy Policy Act**

#### 100,000 sq. ft. Manufacturing Example

Lighting level after retrofit - 1 watts/sq. ft. (1.32 required for 100%)

% of deduction credit - 100% or \$.60/sq. ft.

Federal Tax Rate - 38%

Tax Savings = .38 x \$.60/sq. ft. x 100,000 sq. ft. = \$22,800



# **HVAC Opportunities**



## **Chiller Plant Optimization**



# **Energy In The Chiller Plant**

- One of the highest energy users in most facilities

- High potential for inefficiency
- High potential for efficiency improvements

© American Standard Inc. 1996



# Chiller Plant Optimization

# Phase I - Get it running right – back to design conditions

© American Standard Inc. 1996



© American Standard Inc. 1996

#### **Common Condenser Inefficiencies**

- Non-Condensable gases
- Fouled Condenser Tubes
- High Condenser Water Temp
- Low Condenser Water temp
- Low Condenser Water Flow
- High Condenser Water Flow



#### **Common Evaporator Inefficiencies**

gia Power's Energy

- High Leaving Water Temp
- Low Evap. Temp.
- Low Evap. Press.
- Low Evaporator Water Flow
- High Evaporator Water Flow
- Contaminated Refrigerant
- Low on Charge

G

0

0

© American Standard Inc. 1996

Seminar

# GEORGIA POWER

#### **Efficiency Loss Versus Oil Content**

A SOUTHERN COMPANY



# An Example...



#### System Design Conditions

- Evap. 45 °F Sup, 55 °F Rtn

– Cond. 85 °F LCWT, 95 °F ECWT

#### Chiller Specifications

- 1000 Ton Chiller
- 20 Years Old
- 0.65 kW/Ton

#### Utility Cost

G

e

- \$ 0.0401 / kWh
- \$ 158.76 /kW-yr

#### Performance Impact

– 1.5 % Efficiency Loss for 1 °F Increase in Lift

orgia Power's Energy

Actual 44 °F Sup, 54 °F Rtn Actual 86 °F LCWT, 97 °F ECWT

© American Standard Inc. 1996

Seminar



# Let's Add It Up!

- Condenser water 1 °F High
- Cond. approach 2 °F High
- Evap. setpoint 1 °F Low
- Evap. approach 1 °F High
- Cond. pressure 2 psi High
- Total losses

1.5 %1.5 %3.0 %1.5 %1.5 %6.0 %

15 %

© American Standard Inc. 1996

## What's It Worth ?



- Using Equivalent Full Load Calculations: (Tons X kW/Ton) X (\$/kW + \$kWh X EQFL) = Annual Energy Cost
  Optimal Conditions: 1000 X 0.65 X (\$158.60 + \$.0401 X 2500) = \$168,253
- Our Conditions:

e

ເຜັ

1000 X (0.65 X 1.15) X (\$158.60 + \$.0401 X 2500) = \$193,491

The Excess Operating Expense = \$25,238

orgia Power's Energy

© American Standard Inc. 1996

Seminar



## **Chiller Plant Optimization**

# Phase II Get it running better

- design improvements

© American Standard Inc. 1996



# **Chiller Efficiency Progress**

| 373  | Efficiency | Efficiency kW/Ton |  |  |  |
|------|------------|-------------------|--|--|--|
| 'ear | Average    | Good              |  |  |  |
| 977  | .84        | .75               |  |  |  |
| 980  | .72        | .68               |  |  |  |
| 990  | .65        | .62               |  |  |  |
| 991  | .64        | .61               |  |  |  |
| 992  | .63        | .59               |  |  |  |
| 993  | .63        | .55               |  |  |  |
| 995  | .61        | .52               |  |  |  |
| 997  | .60        | <.49              |  |  |  |
|      |            |                   |  |  |  |

1977 -1997 ... over 50% improvement.

© American Standard Inc. 1996



#### Chiller Plant Annual Energy Consumption 1995 - Current





### **Chiller Plant Optimization**

**Chilled Water Reset Condenser Water Reset Tower Fan Optimization Chiller Load Matching Condensing Pump Optimization Chilled Water Pump Optimization Free Cooling** 

© American Standard Inc. 1996



### **Chilled Water Reset**

**Typical Operation**: Leaving water temperature is maintained at a constant 42 deg F

**Strategy**: Reset leaving water temperature based on space load and relative humidity – 48 degrees during cooler periods of year.

Savings: Each degree that the chilled water temperature is raised saves 1.5%

orgia Power's Energy

ເຜັ

e

© American Standard Inc. 1996

Seminar


#### **Condenser Water Reset**

**Typical Operation**: Condenser water temperature is maintained at a constant 85 deg F

Strategy: Reset condenser water temperature based on outdoor wet bulb and system load – optimum is 80 deg F

Savings: Lowering the condenser water return temperature by 1 degree saves 1.5%.

orgia Power's Energy

e

ເຜັ

© American Standard Inc. 1996

Seminar

## Chiller Tower Control What is Optimal ?







#### **Install VSD's on Cooling Tower Fans**

Typical Operation: Fans cycle to maintain desired setpoint

Strategy: Apply variable speed drives to more closely match tower capacity to system load and take advantage of the fact that:

HP≈CFM<sup>3,</sup>

A 20% CFM reduction results in a 50% HP reduction

© American Standard Inc. 1996



## Variable Frequency Drive Energy Savings

#### VARIABLE SPEED DRIVE KW USAGE





# **VFD Savings 1 Shift**

| Fan HP                         | 20      |
|--------------------------------|---------|
| Motor Efficiency               | 0.94    |
| \$kWh                          | 0.08    |
| # Shifts                       | 1 shift |
| Hours of Operation (Clg. Twr.) | 3120    |
| 1 Speed Fan EFLH               | 859.1   |
| 2 Speed Fan EFLH               | 390.8   |
| VSD EFLH                       | 160.5   |
|                                |         |

| Cooling Tower VSD Retrofit Cost Summary |            |             |             |                 |
|-----------------------------------------|------------|-------------|-------------|-----------------|
|                                         |            |             | Annual      | Payback for     |
|                                         | Annual kWh | Annual Cost | VSD Savings | Changing to VSD |
| Single Speed Fan                        | 13,636     | \$1,091     | \$881       | 4.5             |
| Two Speed Fan                           | 6,203      | \$496       | \$286       | 14.0            |
| VSD Fan                                 | 2,625      | \$210       | NA          | NA              |



## **VFD Savings 2 Shifts**

| Fan HP                         | 20      |
|--------------------------------|---------|
| Motor Efficiency               | 0.94    |
| \$kWh                          | 0.08    |
| # Shifts                       | 2 shift |
| Hours of Operation (Clg. Twr.) | 6570    |
| 1 Speed Fan EFLH               | 1706.9  |
| 2 Speed Fan EFLH               | 678.3   |
| VSD EFLH                       | 304.4   |

| Cooling Tower VSD Retrofit Cost Summary |            |             |             |                 |
|-----------------------------------------|------------|-------------|-------------|-----------------|
|                                         |            |             | Annual      | Payback for     |
|                                         | Annual kWh | Annual Cost | VSD Savings | Changing to VSD |
| Single Speed Fan                        | 27,092     | \$2,167     | \$1,769     | 2.3             |
| Two Speed Fan                           | 10,766     | \$861       | \$463       | 8.6             |
| VSD Fan                                 | 4,976      | \$398       | NA          | NA              |



# **Optimizing Chiller Loading**

Typical Operation: Chillers are turned on to maintain a desired leaving chilled water temperature.

Strategy: Optimize operation by:

using VSD's

ເຜັ

e

base loading high efficiency machines

orgia Power's Energy

matching chillers to load

© American Standard Inc. 1996

Seminar



# **VSD Drives for Chillers**





#### **Base Load Most Efficient Chiller**

0000

Standard Effic.



© American Standard Inc. 1996



## **Impact of Load Matching**



gia Power's Energ

G

0

r

0

© American Standard Inc. 1996

eminar

V



#### **Install VSD's on Condensing Water Pumps**

Typical Operation: Pumps run at full flow when chillers are operational

Strategy: Install variable speed drives controlled from chiller refrigerant side differential pressure

orgia Power's Energy

ເຜັ

0

© American Standard Inc. 1996

Seminar



## Condenser Water Pump VFD's 1 @ 75 HP

**INSTALLED COST:** 

\$ 12,000

#### **SAVINGS**:

#### **PAYBACK:**

\$ 4,000

**3** Years

© American Standard Inc. 1996



#### **Consider Winter Free Cooling**

G





#### **Optimize Air Handlers**



eminar

5

#### **Install VFD's on Central Air Handlers**

Installing VFDs can reduce air handler kWh consumption between 20%-40%/yr.

ເອັ

e

d

| HP                     | 20             |  |
|------------------------|----------------|--|
| Motor Efficiency       | 0.94           |  |
| kW                     | 15.87          |  |
| Annual Operating Hours | 2500           |  |
| \$/kWh                 | 0.0401         |  |
|                        |                |  |
| Zone Type              | Mixed          |  |
| Existing Fan Control   | Constant Speed |  |
| Proposed Fan Control   | VSD            |  |
| Annual kWh Savings     | 26,139         |  |
| Annual Cost Savings    | \$1,048        |  |
| <b>-</b>               |                |  |
| Payback                | 3.8            |  |
|                        | ALLINS         |  |
|                        |                |  |
|                        | E              |  |

S

E

e



#### **Install VFD's on Central Air Handlers**

Installing VFDs can reduce air handler kWh consumption between 20%-40%/yr.

| HP                     | 20             |
|------------------------|----------------|
| Motor Efficiency       | 0.94           |
| kW                     | 15.87          |
| Annual Operating Hours | 4000           |
| \$/kWh                 | 0.0401         |
|                        |                |
| Zone Type              | Mixed          |
| Existing Fan Control   | Constant Speed |
| Proposed Fan Control   | VSD            |
| Annual kWh Savings     | 41,822         |
| Annual Cost Savings    | \$1,677        |
|                        |                |
| Payback                | 2.4            |
|                        |                |



#### **Reclaim Waste Heat From Exhaust Air**

If large amounts of outside air are required and only a few exhaust points exist, consider installing air – air heat exchangers they can reclaim 70%-80% of the energy being exhausted.



## **Optimize HVAC Controls**



#### **Energy Management Strategies**

Use EMCS to control HVAC equipment in ways that maximize comfort while minimizing energy consumption.



# Free Cooling or Economiser Mode

– Open outside air dampers when OAT <  $60^{\circ}$ 

 Fan remains on to blow comfortable outdoor air throughout building

 Compressors can be turned off or run at reduced capacity

Reduces annual cooling kWh by 20%



#### **Reset Chilled Water System Values**

- Each 1° F rise in chilled water temperature reduces chiller power consumption by 1.5%
  - During cooler periods can raise temp. to 48  $^\circ\,$  F 50  $^\circ\,$  F
- Each 1° F rise in condenser water return temperature reduces chiller power consumption by 1.5%
  - Optimum condenser water temperature during cooler months is 80° F



# **Ventilation Control**

- Conditioning outside air requires high energy consumption
- Save energy by bringing in outside air as required by true occupancy rather than maximum theoretical occupancy by using CO<sub>2</sub> sensors
- Good applications: Theatres, Churches



## **Control Schedules**

Schedule equipment use based on occupancy

- Schedule set-up/set-back temperatures during unoccupied periods
- Reduces HVAC kWh by 10%-20% vs. no control







# **Optimum Start/Stop**

- Let EMCS determine when to start equipment
- System uses many variables to determine optimum start time:
  - Space temperature
  - Outdoor air temperature
  - Programmed space comfort conditions
  - Occupancy times
  - Heat loss/gain characteristics
- Maximizes energy savings without impacting comfort
- Can save an additional 5% 10% kWh on top scheduling equipment on/off



## **Impact of Optimum Start/Stop**





## **Increase Zero Energy Band**

- Prevent simultaneous heating and cooling
- Establish dead band comfort range
- Reduces run time of equipment



## **Zero Energy Band Program**





## **Demand Limiting**

- Prioritize loads to shed

- Water heating
- Decorative fountain pumps
- Adjust space temperature set-points



# Monitoring

#### Monitoring energy use is key to controlling Costs

- Trending
- Alarming
- Reporting





## **Optimize Gas Boiler Efficiency**



# **Causes of Efficiency Loss**





## **Minimize Partial Loading**



#### **Excess O<sub>2</sub> Losses**



#### **COMBUSTION HEAT LOSSES**



If a boiler is perfectly tuned and O2 trim controls are added, a minimum of 2% in annual gas consumption could be saved.

In reality most boilers could save between 4% - 10%.

S

eminar

#### **Purchase an OXYGEN TRIMMING SYSTEM**



**Installed Cost \$9,000** 

**Payback = 1.5 years** 

(150 bhp boiler operating 1.5 shifts for 5.5 days/week @ \$.80/therm)







### **Repair Steam Traps**

## **Steam Traps**



- A steam system that has not been maintained in 3 to 5 years can have between 15% to 30% of its installed steam traps leaking or failed. This equates to about 7.5% of the total steam produced.
- These failed traps are allowing live steam to escape into the condensate return system.
- A maintained steam system should have less than a 5% failed trap population or 1.7% loss of the steam produced.
- -On average a single faulty trap will lose 12 lb/hr of steam or \$1,156/yr.


## **Optimize Motors & Drives**



# **Replace V Belts with Cog Belts**

- Cog Belts can reduce energy costs by 2%
- Evaluate each application before applying. Not all applications will benefit.



eminar

### **Buy Premium Efficiency Motors**

ເຜັ

e

0 r

а

Upon failure, replace standard or high efficiency motors with premium efficiency motors (1%-2% energy reduction, payback < 2 years.

| Table 1. Annual Savings from Specifying NEMA Premium Motors |                           |                                  |                                                    |                           |  |  |  |
|-------------------------------------------------------------|---------------------------|----------------------------------|----------------------------------------------------|---------------------------|--|--|--|
|                                                             | Full-load Moto            | or Efficiency (%)                | Annual Savings from Use of a<br>NEMA Premium Motor |                           |  |  |  |
| Horsepower                                                  | Energy Efficient<br>Motor | NEMA Premium<br>Efficiency Motor | um Annual Energy Dollar<br>tor Savings, kWh \$/    | Dollar Savings<br>\$/year |  |  |  |
| 10                                                          | 89.5                      | 91.7                             | 1,200                                              | \$60                      |  |  |  |
| 25                                                          | 92.4                      | 93.6                             | 1,553                                              | 78                        |  |  |  |
| 50                                                          | 93.0                      | 94.5                             | 3,820                                              | 191                       |  |  |  |
| 100                                                         | 94.5                      | 95.4                             | 4,470                                              | 223                       |  |  |  |
| 200                                                         | 95.0                      | 96.2                             | 11,755                                             | 588                       |  |  |  |

Note: Based on purchase of a 1,800 rpm totally enclosed fan-cooled motor with 8,000 hours per year of operation, 75% load, and an electrical rate of \$0.05/kWh.

Power's Energy



# **Optimize Environmental Controls**



Reduce Water Flow to Exhibits Where the Animals are Less Active at Night Using VSD's:

- -Fresh & Salt Water Otters
- -Sea Lions
- -Belugas
- -Penguins

Georgia Power's Energy Seminar<sup>77</sup>



# Pump Energy Saving Measures & Approx. Savings

|                                                   | Est. Savings |
|---------------------------------------------------|--------------|
| Action                                            | Potential    |
| Valve throttling                                  | 5 - 20%      |
| Impeller trim                                     | 5 - 30%      |
| Reduce speed for fixed load                       | 5 - 40%      |
| Install parallel system for highly variable loads | 10 - 30%     |
| Replace throttling valves with speed controls     | 10 - 60%     |
| Replace motor or pump with more efficient model   | 1 - 3%       |
| Coatings inside pump                              | 0.5 - 2%     |

Dave Flinton

ITT Industrial & BioPharm Group September 20, 2006

Georgia Power's Energy Seminar<sup>78</sup>



#### **Install VSD's on Larger Pumps**

- -Filters generally need to be cleaned every 3 days
- The first two days the filters are clean and the pressure drop across them are 10 feet
- -The 3<sup>rd</sup> day the drop might be 35 feet.

Georgia Power's Energy Seminar<sup>79</sup>



### **Impact of Dirty Filters on Energy**

**Example:** 1000 gpm pump, Pump efficiency = .8Motor efficiency = .95System Head Loss = 35 feet (not including filters) A Clean filter with 10' of head requires 15.0 kW of pumping A Dirty filter with 35' of head requires 23.3 kW of pumping The Dirty Filter requires 35% more energy! orgia Power's Energy Semina G e



# **Optimize Compressed Air System**

Slides courtesy of Dean Smith, Air Management Georgia Power's Energy Seminar



According to a Study by the DOE Only 50% of the Compressed Air Produced is Appropriately Utilized



Georgia Power's Energy Seminar

50%



# **Cost Reduction Opportunities**

 Typically, only 25%-35% of the savings opportunity is on the Supply side or in the compressor room

- Most opportunities are out in the plant - 65%-75%

Georgia Power's Energy Seminar<sub>83</sub>



### Energy is only part of the story. Total operating costs include:

- Cooling costs, water, sewer, chemical treatment
- Maintenance, parts, inside labor, outside contractors.
- Major repairs and rebuilds
- Rentals costs as required
- Operating labor and supervision
- Depreciation and capital costs
- These costs are typically 30% of total costs; energy is 70%.
- Total annual operating costs represented = energy costs / .7 = \$

Georgia Power's Energy Seminar<sup>84</sup>



When Trying to Reduce Costs Go For the Low Hanging Fruit First



Artificial Demand 10-15%





1

1, 2, 3 are on the demand side
-3 alone is on the supply side
50%
Georgia Power's Energy Seminar<sup>85</sup>



# **Demand-Side Opportunities**

Georgia Power's Energy Seminar<sup>86</sup>

# **Fix the Leaks!**



A SOUTHERN COMPANY

#### **COMPRESSED AIR LEAK RATE**

#### **STANDARD CUBIC FEET PER MINUTE**

Standard Conditions = 14.7 PSIA / 70 °F / 0% RH, 7.13¢/kWh, 8760 hours/yr.

|                 |      | Size of Leak (in) |         |         |          |              |          |           |           |           |           |
|-----------------|------|-------------------|---------|---------|----------|--------------|----------|-----------|-----------|-----------|-----------|
| Air<br>Pressure | 1/64 | 1/32              | 1/16    | 1/8     | 1/4      | 3/8          | 1/2      | 5/8       | 3/4       | 7/8       | 1         |
| PSIG            |      |                   |         |         |          | Leak rate in | SCFM     |           |           |           |           |
| 70              | \$37 | \$150             | \$598   | \$2,398 | \$9,581  | \$21,611     | \$38,350 | \$59,836  | \$86,193  | \$117,298 | \$153,274 |
| 80              | \$42 | \$167             | \$670   | \$2,673 | \$10,705 | \$24,109     | \$42,847 | \$66,956  | \$96,311  | \$131,163 | \$171,262 |
| 90              | \$46 | \$185             | \$740   | \$2,961 | \$11,842 | \$26,607     | \$47,344 | \$73,951  | \$106,555 | \$145,029 | \$189,375 |
| 100             | \$51 | \$202             | \$811   | \$3,248 | \$12,991 | \$29,231     | \$51,841 | \$81,072  | \$116,673 | \$158,895 | \$207,488 |
| 110             | \$55 | \$220             | \$881   | \$3,523 | \$14,116 | \$31,729     | \$56,463 | \$88,067  | \$126,916 | \$172,761 | \$225,601 |
| 120             | \$59 | \$239             | \$952   | \$3,810 | \$15,240 | \$34,227     | \$60,960 | \$95,187  | \$137,035 | \$186,627 | \$243,714 |
| 125             | \$62 | \$247             | \$987   | \$3,947 | \$15,740 | \$35,477     | \$63,208 | \$98,685  | \$142,156 | \$193,497 | \$252,708 |
| 150             | \$73 | \$296             | \$1,180 | \$4,684 | \$18,738 | \$42,222     | \$74,951 | \$113,675 | \$164,267 | \$223,478 | \$292,057 |

#### **Eliminate Improper Uses of Compressed Air**



A SOUTHERN COMPANY

#### Any application that can be done more effectively or more efficiently by a method other than compressed air

Utilize blowers at 25 scfm/hp for :

- Open Blowing drying, cooling,
- Sparging
- Personnel Cooling
- Atomizing
- Padding

e

ໄຕ້

0

- Vacuum Generation
  - **Utilize Proper Equipment for :**
- Mixing or Agitation
- Cabinet Cooling

**Utilize Storage to Eliminate Peak Demands for :** 

- Dilute Phase Transport
- Dense Phase Transport
  - Open hand held blowguns or lances
  - Diaphragm Pumps



#### **Use Low Pressure Blowers When Possible**

- Compressors deliver 4 cfm / hp
- Blowers deliver 15-25 cfm / hp but they must be properly applied





#### **Use Vacuum Pumps Instead of Venturi Vacuums**

Dedicated vacuum systems use 1/10<sup>th</sup> as much energy as venturi vacuum systems.

Georgia Power's Energy Seminar<sup>®</sup>



91

#### **Use Electric Motors Whenever Possible**

- In general, it takes 7-8 hp of electrical power to deliver 1 hp of compressed air to the plant floor.
- Electric drive tools/motors use 1/7<sup>th</sup> 1/8<sup>th</sup> as much energy as compressed air tools/motors.

### **Use High Efficiency Nozzles**



-Reduce consumption by 30%-70%

-The supply air must be filtered to protect clearances





# **Reduce Artificial System Pressure**

- The input power increases 1% for every 2 psi increase in compressor discharge pressure
- Unregulated consumption (leaks) increase ~ 1% for every psi increase in system pressure at 100 psig
- Net result is >1.5% 2.0 % increase in operating costs for every 1 psi increase in pressure; and this does not include the cost of additional compressors



### **Causes of Excessive System Pressure**

- Excessive pressure drops due to improperly sized system components:
  - Piping
  - Filters
  - Dryers
  - Regulators
- Lack of proper storage not enough storage is available to buffer high intermittent loads.
- Not understanding critical pressure applications.

#### **Compressed Air System Pressure Profile**







#### **Provide Adequate Central Plant Storage**

- Plant storage <u>must be after</u> the filters and dryers to provide air on demand to the system without surging the cleanup equipment.
- Plant storage should be at a higher pressure than that required by the plant for it to be of any benefit.
- Compressor room storage must be sized based on the following considerations:
  - 1. To support larger demand events when practical in order to minimize compressor power in the system.
  - 2. To support the demand in the system during a compressor failure and backup compressor start. This must allow for the permissive time of the backup compressor(s) and must be calculated from the minimum control storage pressure which will normally be allowed.
  - 3. To minimize cycling on the largest anticipated trim compressor. Cycles should be less than 20 per hour but preferably closer to 15 per hour.



## **Provide Adequate Local Storage**

- Providing adequate local storage can reduce large pressure fluctuations throughout the compressed air system.
  - Local storage requirements are often very small.

Georgia Power's Energy Seminar<sup>97</sup>

# Local Storage Example

#### **Typical Baghouse or Dust Collector**







#### Proper Installation of Dedicated Storage for Baghouse or Dust Collector



Inadequate storage at the point of use The Positive Impact of Metered Recovery on the System



A SOUTHERN COMPANY





### **Identifying Critical Pressure Applications**

- Ask the following types of questions of the compressor operator and the production staff but take all answers with a very large grain of salt.
- Who calls? What specific piece of equipment is affected?
- Did it produce rejects or slow down at this pressure or is the alarm point and the actual requirement is lower?
- Does this loss of pressure occur on a regular basis? When was the last time pressure dropped to this level and what occurred?
- Where is the pressure level referenced; regulator gauge, header gauge, alarm?
- Are there more of this type of production equipment? Do they incur the same problem? When the pressure last dropped, did the same thing happen at all these production machines?
- What is the next production process affected if the pressure continues to drop?



# **Supply Side Opportunities**

Georgia Power's Energy Seminar<sup>102</sup>



#### **Compressor Equipment Efficiencies**

| Compressor types @ 100 psig <u>c</u>  | fm / bhp | <u>% efficiency</u> |
|---------------------------------------|----------|---------------------|
| -Non-lubricated rotary screw          | 4.1      | -11%                |
| -Single stage lubricated rotary screw | v 4.5    | 0 %                 |
| -Two stage lubricated rotary screw    | 4.8      | 6 %                 |
| -Multi stage centrifugal              | 4.8      | 6-8 %               |
| -Two stage reciprocating              | 5.2      | 16 %                |

Practical energy savings based upon compressor type is only 6-8%



#### **The Impact of Controls on Efficiency**

#### COMPRESSOR CONTROLS CREATE >90% OF THE SUPPLY SIDE OPPORTUNITY IN COMPRESSED AIR

- Part loaded compressors can be the result of control conflicts, or they may be intentional:
- Part loaded compressors allow higher pressures
- Part loaded compressors provide on line power for peaks
- Part loaded compressors provide backup for failures
- PART LOADED COMPRESSORS ARE VERY INEFFICIENT

#### Comparison of Rotary Screw Compressor Capacity Controls







### Automation Case History

**Plastic Bottle Blowing** 





# **Compressed Air Savings Example**



0

.....

#### Case Study, 400,000 sq. ft., Plastic Extrustion Facility

8 – 350 hp screw compressors

| Measure                | Cost to   | Annual Savings | Payback | NPV       | IRR  |
|------------------------|-----------|----------------|---------|-----------|------|
|                        | Implement |                | 5       |           |      |
| Repair air leaks       | \$18,900  | \$89,370       | 0.21    | \$317,616 | 294% |
| Reactivate dryer       | \$0       | \$10,446       | NA      | \$39,216  | NA   |
| heaters & controls for |           |                |         |           |      |
| dryers 1-3             | 9         |                | 2       |           |      |
| Install dew-point      | \$5,250   | \$13,590       | 0.38    | \$47,400  | 167% |
| controls on dryers 1-3 | 2         |                |         |           |      |
| Reduce system          | ?         | \$39,769       | ?       | ?         | ?    |
| pressure from 116 psig |           |                |         |           | 127  |
| to 96 psig             |           |                |         |           |      |
| Install modulating     | \$17,000  | \$14,203       | 1.2     | \$37,224  | 54%  |
| valve & demand         |           |                |         |           |      |
| controller             |           |                |         |           |      |
| Georgia                | Dowor     | 'e Ene         | r a v   | Sami      | nar  |

0